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Temporal complexity of the order parameter at the phase transition
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We study a decision making model in a condition where it is equivalent to the two-dimensional Ising model,
and we show that at the onset of phase transition it generates temporal complexity, namely, nonstationary and
nonergodic fluctuations. We argue that this is a general property of criticality, thereby opening the door to
the application of the recently discovered phenomenon of complexity matching: For an efficient transfer of
information to occur, a perturbing complex network must share the same temporal complexity as the perturbed
complex network.
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I. INTRODUCTION

Phase transitions and critical phenomena occur frequently
in nature and have been widely studied by physicists, see
for instance [1]. The Ising model [2] originally introduced to
explain ferromagnetic phase transition is well known, and the
exact solution found by Onsager [3] for the occurrence of phase
transition in the two-dimensional case is widely recognized as
an example of outstanding theoretical achievement. In the last
few years some scientists have used the Ising model to shed
light on biological and neurophysiological processes [4–7].
More precisely, the authors of [4] used the Ising model
to explain the collective behavior of biological networks
and the authors of [5–7] adopted the Ising model for the
purpose of supporting their hypothesis that the brain works
at criticality without establishing a clear distinction between
phase transition and self-organized criticality [8]. Finally,
we have to mention that the Ising model is frequently used, see
for instance [9,10], to model neurophysiological data with the
constraint of maximal entropy. Although relevant to explore
the cognition properties of the brain, this is a perspective
different from the one adopted in this paper.

Couzin [11] made the conjecture that the cooperative
interaction between the birds of a flock may mimic the
brain cognition properties, and the experimental observation
of Cavagna et al. [12] confirmed the criticality condition of
a coordinated flock of birds. It is important to emphasize that
the connection between phase transition processes and coop-
erative behavior of biological systems was already stressed in
the pioneering paper of Vicsek et al. [13]. It is thought [4] that
biological systems in general operate at criticality.

The phase transition condition is not confined to biological
systems. The recent work on econophysics [14,15] suggests
that the same arguments can be applied to sociological
systems. As a matter of fact, Sornette [15] proposes a model
of cooperative economical interaction, of the same type as
the Ising model, which generates at criticality a transition
from subcritical to supercritical patterns very similar to those
produced by the Ising model. As stressed by the authors
of [5], the Ising patterns at criticality correspond to the
emergence of correlation links yielding a scale-free network
statistically indistinguishable from that experimentally ob-
served within the brain, using functional magnetic resonance
imaging.

These studies emphasize the spatial and network com-
plexity emerging from the cooperative interaction of the
network’s units, but overlook the temporal complexity of
these networks. Herein we are attempting to fill this gap
and prove that the temporal complexity emerges at criticality.
Temporal complexity is defined as follows. The time dynamics
of complex networks is characterized by the occurrence of
significant events, which may be financial crashes [15], brain
quakes [5,6], or the changes of direction of a flock of birds
[12,13]. The time interval between two consecutive events
is given by a distribution density ψ(t), which, drastically
departing from the conventional Poisson statistics, has the
inverse-power-law form

ψ(τ ) ∝ 1

τμ
, (1)

with μ < 2. The occurrence of an event does not have any
memory of the occurrence of earlier events. This property is
usually denoted as renewal, but it must not be confused with the
ordinary Poisson and Markov condition: The signal generated
by these events is characterized by long-range correlation in
time, and, most importantly, it is essentially nonstationary,
thereby breaking the ergodicity that is a fundamental property
of statistical physics [16]. We refer to it as the non-Poisson
renewal condition. A significant event is interpreted as a failure
whose occurrence brings the network back to a brand new
condition. We refer to these as crucial events.

Events of this kind may be very difficult to detect. The
theoretical discussion [16], for instance, applies to the case of
dichotomous signals, where crucial events correspond to the
abrupt transition from one to the other value of the signal. In
the case of the decision making model (DMM) under study, the
single units in isolation produce perfect dichotomous signals.
They can be easily detected, but they are of a Poisson kind,
thereby strikingly departing from the condition of temporal
complexity. When the control parameter is extremely large, the
global signal undergoes abrupt transitions that however depart
again from the condition of temporal complexity, because
they are predominantly of a Poisson kind. At criticality the
global signal loses these abrupt transitions that are replaced
by smoother fluctuations around the mean value. Herein we
consider a model generating a signal whose time mean value
vanishes. We assume the crossing of the origin to be the
proxy of a significant event. Thus, we interpret the signal as a
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dichotomous fluctuation making abrupt changes from 1 to −1
and back again. We evaluate the correlation function of this
ideal dichotomous signal, denoted by the symbol �(t,t �), and
we prove that its dependence on the times t and t � exactly fits
the prediction of the non-Poisson renewal condition.

The connection between phase transition, and its spatial
and network complexity, with temporal complexity is not well
known. In the literature there are only a few papers where this
connection is discussed. One is [17], which converts the 3D
Ising model into a critical map generating type I intermittent
dynamics and consequently the same temporal complexity
as the one under discussion herein. The emergence of non-
Poisson renewal properties was also discussed in [18,19],
which is devoted to illustrating the cooperative properties of
a DMM. The foundation of these papers is sociological and
similar to that of the economical model illustrated in the work
of Sornette [15]. Thus, the authors [18,19] did not discuss the
connection of the DMM with the Ising model and adopted the
nonrealistic but often made assumption of all-to-all coupling
among the network’s units, thereby confining the emergence
of an inverse power law, namely, of temporal complexity, to
the same time scale as that of the units in isolation.

The motivation for the present research work is given by
the transfer of information from a complex network to another
complex network [20]. Rather than using entropic arguments,
as is usually done with the transfer of information, we open
the door to the concept of complexity management recently
advocated in [21]. This latter work established that a complex
network driven by crucial events is sensitive to stimuli with the
same complexity. In other words, the transfer of information
rests on temporal complexity and this explains the motivation
to prove that criticality also generates temporal complexity.

In Sec. II we discuss under which conditions the DMM [18,
19] is equivalent to the Ising model. In Sec. III we prove that
at criticality the function ψ(t) becomes an inverse power law
for over four decades. We shall also argue that with increasing
the network’s size ψ(t) may become an infinitely extended
inverse power law. Section IV shows that this is a renewal
process. Finally we devote Sec. V to concluding remarks.

II. DETAILED DESCRIPTION OF THE MODEL

We consider a system of L discrete variables located at the
nodes of a two-dimensional square lattice. Each unit si is a
stochastic oscillator and can be found in either of two states,
+1 or −1. The dynamic is introduced by choosing a single
unit on site i and updating it in an elementary time step with a
transition rate g:

g
(
s+1
i → s−1

i

) = g0 exp

[
K

M
(M+1 − M−1)

]
, (2)

g
(
s−1
i → s+1

i

) = g0 exp

[
− K

M
(M+1 − M−1)

]
. (3)

Here M denotes the total number of nearest neighbors, and
M+1 and M−1 the number of nearest neighbors being in the
state +1 and −1, respectively. Single units change its states,
thereby making M+1 and M−1 fluctuate in time, while, of
course, the total number of nearest neighbors is conserved,
M+1 + M−1 = M .
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FIG. 1. (a) Temporal evolution of a single unit si(t) and (b) of the
global order parameter ξ (t) for the decision making model realized on
a square lattice of L = 50 × 50 nodes, with g0 = 0.01 and K = 1.70.
To illustrate the concept of crucial events we mark the time intervals
τ between two consecutive events, according to their definitions
assumed in this paper. Notice different time scales on both plots.

All numerical calculation are performed on a square lattice
of either L = 50 × 50 or L = 100 × 100 nodes with periodic
boundary conditions. In a single time step a run over the whole
lattice is performed and for every unit si the transition rate of
Eqs. (2) or (3) is calculated according to which a node is given
the possibility to change its state. The single unit in isolation,
K = 0, fluctuates between states +1 and −1 with the transition
rate g = g0. When coupling constant K > 0, a unit in the state
+1 (−1) makes a transition to the state −1 (+1) faster or
slower according to whether M−1 > M+1 (M+1 > M−1) or
M−1 < M+1 (M+1 < M−1), respectively.

Next, we define the global order parameter ξ (t) =
1
L

∑L
i=1 si(t), which is characterized by the variability that

does not possess the dichotomous character of single units. In
Fig. 1 we show exemplary temporal evolution for the single
unit si(t) and for the global order parameter ξ (t). Note that
the amplitude of variable ξ (t) depends on the value of the
coupling constant K . When K = 0, all units in the system are
independent Poisson processes; thereby an average taken at
any moment of time over all of them is zero. Once the value
of the coupling increases, K > 0, single units are less and
less independent, resulting in a nonzero average. The quantity
KC is the critical value of the control parameter K , at which
point a phase transition to a global majority state occurs. In
numerical calculations we use the time average ξeq = �|ξ (t)|�
as a measure of this global majority. More precisely, after initial
106 time steps, the average is taken over the same number of
the consecutive time steps of the model.

Note that in the special case when M is the same for all the
nodes and g0 � 1, we find that our model generates the same
phase transition as the two-dimensional Ising model discussed
in the seminal paper of Onsager [3]. This is an expected result
insofar as the Ising model rests on the Hamiltonian

H = −J

L∑
i

σiσj , (4)
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where σi and σj denote the Pauli operators with eigenvalues
±1. According to Boltzmann statistics equilibrium is described
by the density matrix

ρ = exp (−βH )

Z
, (5)

with β = 1
kBT

, kB being the Boltzmann constant and T the
absolute temperature. Thus, the off-diagonal elements of the
transfer matrix [22] become equivalent to the transition rates
of Eqs. (2) and (3), under the condition

kBT = J

K
= M

K
. (6)

As examples of conditions yielding this equivalence, we
consider two cases. The former is the case of all-to-all
coupling, where M = L. The latter is considered here, and
it is the two-dimensional lattice where each node is coupled to
its 4 nearest neighbors, thereby setting M = 4.

The thermodynamical condition M = L = ∞ was dis-
cussed extensively by authors of [18,19], who showed that
under those conditions the ratios M±1

M
are equivalent to the

probabilities p±1 for a node si to be in one of two allowed
states. The dynamic evolution of a single unit state is then
described by a two-state master equation

d

dt
p+1 = −g

(
s+1
i → s−1

i

)
p+1 + g

(
s−1
i → s+1

i

)
p−1, (7)

d

dt
p−1 = −g

(
s−1
i → s+1

i

)
p−1 + g

(
s+1
i → s−1

i

)
p+1. (8)

Solving the above for the difference in probabilities �(t) =
p+1(t) − p−1(t), which corresponds to the earlier defined
global order parameter ξ (t), one obtains

d

dt
� = 2g0[sinh(K�) − � cosh(K�)]. (9)

This equation yields two solutions, corresponding to global
majority states, for the values of coupling constant K > KC ,
where KC = 1.

The solution to the latter condition of M = 4, L = ∞ can be
found in [23] and yields the condition for the global variable to
be ξeq = (1 − [sinh(K/2)]−4)1/8. In this case the critical value
of the coupling constant is KC = 2 ln(1 + √

2) = 1.7627. In
Fig. 2, we show the phase transition in the latter condition and
we find that, as expected, the numerical evaluation of ξeq(K) is
very close to the theoretical prediction of Onsager [3], thereby
confirming that the DMM is equivalent to the Ising model in
the limiting case g0 → 0.

This equivalence between the DMM and the Ising model is
merely formal, because the DMM does not have a Hamiltonian
origin and does not require the action of a thermal bath at
temperature T to work as does the Boltzmann picture. This
explains why the equivalence with the Ising model requires
that g0 vanish, so as to freeze the dynamics of the single units,
in the absence of cooperation.

When we release the condition g0 → 0, the equivalence of
the DMM with the Ising model is lost. In Fig. 3, we see that,
if the condition of g0 � 1 is abolished, the phase transition
emerges at values of K lower than KC of the theoretical
prediction. Simultaneously, further increase of g0 (g0 ≈ 0.40)
leads to a new regime, in which every unit is surrounded by

0.00

0.25

0.50

0.75

1.00

0.50 1.00 1.50 2.00 2.50

ξ e
q

K

FIG. 2. The phase diagram for global variable ξeq . Thin solid line
and dashed line are the theoretical predictions for the fully connected
and two-dimensional regular network, respectively. In both cases
L = ∞ and the latter case is the Onsager theoretical prediction [3]
for 2D regular lattice. The thick solid line corresponds to the global
states observed for two-dimensional regular lattice (L = 100 × 100
nodes) and g0 = 0.01. Periodic boundary conditions were applied.

nearest neighbors in the opposite state, yielding an update of
its state at every time step and generating the condition in
which the order parameter ξ (t) is exactly zero at all times. It
is worth pointing out that when a network characterized by
a large transition rate g (transition rate g ≈ 1) is studied, it
shows sensitivity to the initial random configuration of the
lattice. We observed that in a limited number of cases the
order parameter evolves to a global majority state, in which
all the nodes are in the same state rather than in condition
ξ (t) = ξeq = 0. Therefore one may consider a bifurcation in
the phase space of the model parameters in this regime.

III. ORDER PARAMETER REVERSAL TIMES

Let us now study the temporal complexity of the order
parameter ξ (t). As pointed out in Sec. I, to prove temporal
complexity of ξ (t) we have to observe significant events
and prove that they are crucial. At criticality the signal is
not dichotomous and, as we shall see hereby, there are good
reasons why it must depart from the dichotomous condition.
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FIG. 3. The two-dimensional phase diagram of global variable
ξeq evaluated for a range of model parameters, g0 and K , on a two-
dimensional regular lattice of size L = 100 × 100 nodes.
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FIG. 4. Survival probability function �(τ ) for the order parame-
ter ξ (t) evaluated on a two-dimensional lattice of size L = 50 × 50
for g0 = 0.01 and increasing values of coupling constant K . The
straight line corresponds to the slope of −0.50, namely to μ = 1.50,
since �(τ ) ∼ 1

τμ−1 .

We make the conjecture that the crossing of the origin, namely
the times at which ξ (t) changes sign, are the significant events
to observe. As illustrated on Fig. 1, we interpret the time
interval τ between two consecutive crossings as the time
duration of a given decision, even if this decision may rest
on a slight and fluctuating majority.

We evaluate the distribution density of decision-time dura-
tions τ , ψ(τ ), and the corresponding survival probability �(τ ),
where �(t) = ∫ ∞

t
dτψ(τ ). Although emerging from a simple

regular lattice, that is, one with no structural complexity,
the survival probability presented in Fig. 4 shows a scale-free
property that extends over more than four decades in time
for K ≈ KC . A further increase of K does not affect the
power-law region and has the effect of producing a more and
more extended exponential shoulder. The exponential shoulder
is expected to become predominant for K → ∞.

As mentioned earlier, a single unit in isolation fluctuates
between two states with the transition rate g = g0. The
corresponding survival probability function is an exponential
function �(τ ) = exp(−g0τ ). At the same time, as illustrated
on Fig. 5, a coupled unit tends to update its state with a
transition rate smaller than g0. This is a property of criticality
that is lost completely for very large values of the control
parameter K . Although it is a computational challenge to
explore the dynamics corresponding to extremely large values
of K , our numerical results suggest that when K is very close to
the critical value, and a decision is reached by a slight majority,
the single units have a dynamics almost indistinguishable
from the Poisson dynamic that they would have in isolation.
As we increase the control parameter K and the majority
becomes larger the single units keep their Poisson dynamics
with a smaller rate. Although it is not possible because of
computer-time limitations to study the network’s dynamics
for values of K much larger than K = 1.80, it is plausible to
make the conjecture that the single units maintain their Poisson
dynamics and that these dynamics become closer and closer to
that of the global variable that will lose its power-law structure
and will become predominantly exponential. In other words,
unanimous and permanent consensus must be perceived as the
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Kξ=1.50
Kξ=1.70
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exp-g0τ

FIG. 5. The survival probability function �(τ ) of the global order
parameter ξ (t) is compared with the transitions between two states
for a single unit si . Simulations were performed on a lattice of
size L = 50 × 50 for g0 = 0.01 and increasing values of coupling
constant K .

manifestation of a limiting condition of Poisson but infinitely
slow dynamics, where the behavior of the single units becomes
identical to that of the global signal.

To make this argument more compelling let us discuss the
properties of the observed exponential shoulder. Since one
observes the network in an organized phase (K > KC) it is
not surprising that one perceives the exponential signature of
an equilibrium regime. Therefore we assume that under those
conditions the global variable ξ (t) follows the dynamics of a
particle diffusing in a double potential well. In the equilibrium
condition one would expect the survival time of staying in
one well to be �(τ ) = exp(−aτ ), where a = A exp(−Q/D).
The parameter Q denotes the height of the potential barrier
separating the wells, and D stands for the diffusion coefficient.
Following [19] we expect the barrier to be a function of
the coupling constant K and the diffusion to depend on the
number of nodes L. By fitting the shoulder, once for a case
where L is kept constant and K varies, and secondly for an
opposite condition, we assess the above hypothesis. The fitting
procedure revealed that the barrier height Q is a linear function
of K (Q ∼ K) and that the diffusion coefficient D is inversely
proportional to the system size L (D ∼ 1/L). For L → ∞ the
transition rate becomes infinitely small and the exponential
shoulder becomes predominant and virtually coincident with
the Poisson dynamics of the single units.

While in the organized phase the effect of increasing L

is that of making the process exponential, although with a
virtually infinite transition time. At criticality the increase of
L has a dramatically different effect. The authors of [19],
based on this DMM in the all-to-all condition, found that at
criticality an inverse-power-law behavior emerges, which is
confined, however, to a time region with the same size as the
Poisson time τP ≈ 1/g0. However, this is not the case when
the units are the nodes of a regular two-dimensional lattice,
interacting only with the four nearest-neighbor nodes. We
have evaluated the time size of the inverse-power-law region
appearing before the exponential shoulder and we found that
its size tends to increase with increasing L as τP ∼ L−1.25.
Unfortunately, this observation is limited to values of L
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smaller than L = 10 000, since going beyond would exceed
the limits of our computer facilities. However, on the basis of
this observation we reach the conclusion that for L → ∞ the
size of the temporal complexity must become infinitely large.
Thus, criticality is a kind of complex singularity embedded in a
Poisson sea.

These intuitive arguments also explain why the signal ξ (t)
at criticality must depart from the dichotomous condition.
This is a consequence of the fact that the single units are
not rigidly bound to follow the opinion of the majority.
There is, consequently, a subtle connection between criticality,
free will, and correlation between different units. Although
the single units may change opinion, they cannot do that in a
way totally uncorrelated from the behavior of the other units,
insofar as this would be incompatible with the emergence of a
majority, as slight as it might be.

IV. TESTING RENEWAL PROPERTIES

As pointed out earlier, the signal ξ (t) at criticality is not
dichotomous. However, replacing it with a dichotomous signal
corresponding to 1 (yes) when ξ (t) > 0 and to −1 (no) when
ξ (t) < 0, thereby turning it into an ideal dichotomous signal,
is the most convenient way to reveal the emergence of crucial
events at criticality. The theory [24] (see also the earlier
work [25]) allows us to evaluate the nonstationary correlation
function �(t,t �) in the specific case when the renewal process
rests on the waiting time distribution density ψ(t) assumed to
be an ideal inverse power law. In general, regardless of whether
this ideal condition of infinitely extended inverse power law is
realized or not, it is possible to establish whether the process
is renewal by noticing that

�(t,t �) = �(τ,ta), (10)

where τ = t − t � and ta = t �. As explained [26], the function
�(τ,ta) can be evaluated by using the time series {ti}, where ti
are the times at which the fluctuation ξ (t) crosses the origin. We
use a mobile window of length ta to evaluate the waiting time
distribution ψ(τ,ta) and the corresponding survival probability
�(τ,ta), by locating the origin of the window on the time
of occurrence of an event and measuring the time distance
between the end of the window and the time of occurrence of
the first event after the window end. To establish whether
the process is renewal or not we shuffle the sequence of
reversal times, thereby generating a new time series {t si }.
We use the same procedure based on a mobile window to
determine �(ta,s ,τ ), which corresponds to the nonstationary
correlation function in the renewal case. If the two survival
probabilities coincide, we conclude that the process is renewal.
If the renewal process is exponential, the correlation function
is stationary, and there is no aging.

In the ideal case of an infinitely extended inverse power law,
with power index μ < 2, as discussed in earlier work [16,24],
aging is perennial. In the case studied in this paper, we have
to take into account that this ideal condition would be realized
by assigning an infinitely large value to L, with the ensuing
consequence that temporal complexity would become virtually
invisible, due to the joint effect of an extremely slight majority
and of a very extended sojourn in a given decision state. To
make temporal complexity visible, we need a compromise,
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ta=100

ta,s=100
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ta=10,000

ta,s=10,000

FIG. 6. Testing for renewal property. Survival probability func-
tion �(τ ) of the order parameter ξ (t) evaluated on lattice of size
L = 50 × 50 and g0 = 0.01, K = 1.70 was aged respectively by
time ta = 100, ta = 1000, and ta = 10 000. Those aged survival
probabilities �(ta,τ ) are compared with the aged renewal prediction
�(ta,s ,τ ).

and we have to set a limit on the time extension of the
inverse power law. As a consequence, we obtain the very
interesting result depicted in Fig. 6, where aging, namely the
slowing down of the survival probability, becomes very large
in the inverse-power-law region, with the survival probability
remaining virtually constant, and in the correspondence of
the exponential shoulder it is virtually suppressed, in accor-
dance with the principle that Poisson statistics annihilates
aging.

V. CONCLUSIONS

This paper establishes that at the onset of phase transition,
in addition to the spatial and network complexity shown by a
number of earlier investigations [4–7,9,12,14,15], we also have
temporal complexity. This significant result reveals a path for
the transport of information from one complex network to
another. As pointed out in Sec. I, there is a general agreement
that complex systems are a set of many units interacting at
the onset of phase transition. The present analysis proves that
these complex networks are characterized also by temporal
complexity, and consequently a perturbing complex network
is expected to exert its influence on another complex network
via the recently discovered complexity management process
[21,31]. Although the present theoretical predictions are based
on the assumption that ψ(τ ) is an ideal inverse power law and
the real complex networks, as shown herein, reach this ideal
condition only when their size is infinitely large, the result
in Fig. 5 indicates that the time region generating ergodicity
breakdown may become so extended as to make a complex
network virtually insensitive to stimuli that do not share the
same extended nonergodic condition.

In the last few years the attention of investigators has
been moving from chaos synchronization of two nonlinear
oscillators [27] to the synchronization dynamics of many units
in large-scale networks [28], called inner synchronization [29]
for convenience. The cooperation induced phase transition
discussed herein can to some extent be thought of as a form of
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inner synchronization. As pointed out [29] the challenge that
the researchers in the field of complexity have now to address
is the phenomenon of outer synchronization [30].

In this light, we conclude that the results presented here
provide a way of addressing outer synchronization, redirecting
the attention of researchers from the details of the topology
of the complex networks to the analysis of the temporal
complexity that inner synchronization may generate. In fact the

principle of complex management [21,31] rests on temporal
complexity, regardless of the way it is generated.
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